当前位置: 首页 » 论文全文
←返回首页
期刊信息:
《药学服务与研究》2019年, 第19卷, 第3期, 第161-165页
标题:
肿瘤相关巨噬细胞靶向药物递送系统的研究进展
DOI:
10.5428/pcar20190301
作者:
1. 王晓宇1(1.西部战区总医院药剂科 成都 610036 scncwxy@163.com)
2. 高申2(2.海军军医大学长海医院药学部 上海 200433 ggss99@126.com)
摘要:
摘要  肿瘤相关巨噬细胞(tumor-associated macrophage,TAM)大量分布于肿瘤组织微环境中,与肿瘤细胞的生长与转移、免疫抑制、新生血管增生密切相关。围绕TAM的肿瘤靶向治疗策略是近年的研究热点。本文总结了纳米粒对TAM靶向递送的影响因素、TAM作为活细胞载体对肿瘤组织的递送过程以及TAM极性转化等方面近年的研究成果,并展望了未来发展趋势。
欢迎阅读《药学服务与研究》!您是该文第 37 位读者!
若需在您的论文中引用此文,请按以下格式著录参考文献:
中文著录格式 王晓宇1,高申2. 肿瘤相关巨噬细胞靶向药物递送系统的研究进展[J]. 药学服务与研究. 2019; 19(3): 161-165.
英文著录格式 WANG Xiaoyu1,GAO Shen2. Research progress in tumor-associated macrophage drug targeted delivery systems[J]. Pharmaceutical Care and Research / yao xue fu wu yu yan jiu. 2019; 19(3): 161-165.
参考文献:
1. Ginhoux F,Jung S.Monocytes and macrophages:developmental pathways and tissue homeostasis[J].Nat Rev Immunol,2014,14(6):392-404.
2. Lewis C E,Harney A S,Pollard J W.The multifaceted role of perivascular macrophages in tumors[J].Cancer Cell,2016,30(1):18-25.
3. Ngambenjawong C,Gustafson H H,Pun S H.Progress in tumor-associated macrophage(TAM)-targeted therapeutics[J].Adv Drug Deliv Rev,2017,114:206-221.
4. Caux C,Ramos R N,Prendergast G C,et al.A milestone review on how macrophages affect tumor growth[J].Cancer Res,2016,76(22):6439-6442.
5. Engblom C,Pfirschke C,Pittet M J.The role of myeloid cells in cancer therapies[J].Nat Rev Cancer,2016,16(7):447-462.
6. Quail D F,Joyce J A.Molecular pathways:deciphering mechanisms of resistance to macrophage-targeted therapies[J].Clin Cancer Res,2017,23(4):876-884.
7. 王晓葳,刘雪,王丹,等.铂类抗癌药物纳米递送系统的研究进展[J].中国医药生物技术,2017,12(1):49-53.
8. Sosale N G,Spinler K R,Alvey C,et al.Macrophage engulfment of a cell or nanoparticle is regulated by unavoidable opsonization,a species-specific ‘marker of self’ CD47,and target physical properties[J].Curr Opin Immunol,2015,35:107-112.
9. Baratta J L,Ngo A,Lopez B,et al.Cellular organization of normal mouse liver:a histological,quantitative immunocytochemical,and fine structural analysis[J].Histochem Cell Biol,2009,131(6):713-726.
10. Tanei T,Leonard F,LIU Xuewen,et al.Redirecting transport of nanoparticle albumin-bound paclitaxel to macrophages enhances therapeutic efficacy against liver metastases[J].Cancer Res,2016,76(2):429-439.
11. Chono S,Tanino T,Seki T,et al.Uptake characteristics of liposomes by rat alveolar macrophages:influence of particle size and surface mannose modification[J].J Pharm Pharmacol,2007,59(1):75-80.
12. CHANG Yanan,GUO Haili,LI Juan,et al.Adjusting the balance between effective loading and vector migration of macrophage vehicles to deliver nanoparticles[J].PLoS One,2013,8(10):e76024.
13. Yu S S,Lau C M,Thomas S N,et al.Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages[J].Int J Nanomedicine,2012,7:799-813.
14. Key J,Palange A L,Gentile F,et al.Soft discoidal polymeric nanoconstructs resist macrophage uptake and enhance vascular targeting in tumors[J].ACS Nano,2015,9(12):11628-11641.
15. MacParland S A,Tsoi K M,OUYANG Ben,et al.Phenotype determines nanoparticle uptake by human macrophages from liver and blood[J].ACS Nano,2017,11(3):2428-2443.
16. SUN Xianlei,GAO Duo,GAO Liquan,et al.Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer[J].Theranostics,2015,5(6):597-608.
17. LIN Yingying,WEI Chongyang,LIU Yuan,et al.Selective ablation of tumor-associated macrophages suppresses metastasis and angiogenesis[J].Cancer Sci,2013,104(9):1217-1225.
18. RUAN Shaobo,HU Chuan,TANG Xian,et al.Increased gold nanoparticle retention in brain tumors by in situ enzyme-induced aggregation[J].ACS Nano,2016,10(11):10086-10098.
19. ZHU Saijie,NIU Mengmeng,O’mary H,et al.Targeting of tumor-associated macrophages made possible by PEG-sheddable,mannose-modified nanoparticles[J].Mol Pharm,2013,10(9):3525-3530.
20. Lee S,Kivime S,Dolor A,et al.Macrophage-based cell therapies:the long and winding road[J].J Control Release,2016,28(240):527-540.
21. Choi J,Kim H Y,Ju E J,et al.Use of macrophages to deliver therapeutic and imaging contrast agents to tumors[J].Biomaterials,2012,33(16):4195-4203.
22. Miller M A,ZHENG Yaorong,Gadde S,et al.Tumor- associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(Ⅳ) pro-drug[J].Nat Commun,2015,6:8692.
23. Klyachko N L,Haney M J,ZHAO Yuling,et al.Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins[J].Nanomedicine (Lond),2014,9(9):1403-1422.
24. Sanford D E,Belt B A,Panni R Z,et al.Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer:a role for targeting the CCL2/CCR2 axis[J].Clin Cancer Res,2013,19(13):3404-3415.
25. Muthana M,Kennerley A J,Hughes R,et al.Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting[J].Nat Commun,2015,6:8009.
26. DOU Huangyu,Destache C J,Morehead J R,et al.Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery[J].Blood,2006,108(8):2827-2835.
27. Andón F T,Digifico E,Maeda A,et al.Targeting tumor associated macrophages:the new challenge for nanomedicine[J].Semin Immunol,2017,34:103-113.
28. Madsen S J,Baek S K,Makkouk A R,et al.Macrophages as cell-based delivery systems for nanoshells in photothermal therapy[J].Ann Biomed Eng,2012,40(2):507-515.
29. Ikehara Y,Niwa T,BIAO Le,et al.A carbohydrate recognition-based drug delivery and controlled release system using intraperitoneal macrophages as a cellular vehicle[J].Cancer Res,2006,66(17):8740-8748.
30. Zanganeh S,Hutter G,Spitler R,et al.Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues[J].Nat Nanotechnol,2016,11(11):986-994.
31. Ortega R A,Barham W,Sharman K,et al.Manipulating the NF-κB pathway in macrophages using mannosylated,siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions[J].Int J Nanomedicine,2016,11:2163-2177.
32. WANG Yi,LIN Yaoxin,QIAO Shenglin,et al.Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment[J].Biomaterials,2017,112:153-163.